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Optical-Model Description of Low-Energy Collisions Between Heavy Ions 
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An optical model has been used to describe the elastic scattering of 016+C12, N14+C12, and N*4+Be9 for 
energies near and above the Coulomb barrier. Using a Woods-Saxon form for both the real and imaginary 
potentials, good agreement with the experimental data is obtained. Quantitative differences between 016+C12, 
which exhibits well-developed diffraction structure, and the other two systems, which exhibit less pro
nounced diffraction structure, are well accounted for by the model and mainly reflect differences in the size 
of the imaginary potential, a small imaginary potential being associated with the large amplitude diffraction 
oscillation. The parameters determined by fitting the elastic scattering data yield reaction cross sections in 
agreement with measured data. Although the model gives a good description of the data there are difficulties 
in the physical interpretation which arise from the deep interpenetration of the colliding ions implied by the 
model; for 016+C12, which requires a small absorption in order to fit the large diffraction oscillations, the 
mean free path inside the potential is ~ 6 F. Such a deep interpenetration does not seem physically realistic, 
yet, within the framework of the model it appears to be a necessary condition for producing the observed 
amplitude of diffraction oscillations. 

A. INTRODUCTION 

THE advent of the tandem accelerator a few years 
ago, for the first time made possible studies of 

heavy-ion elastic scattering at precisely defined energies 
in the energy range near the top of the Coulomb barrier 
and such studies1-3 have revealed some very interesting 
new features. In some cases, sharp resonances are 
observed, in others a broad diffraction-like structure is 
seen, and in other cases only a smooth featureless 
energy dependence is found. These different features are 
apparent in Fig. 1. The 016+C12 scattering exhibits 
sharp resonance structure (~200 keV wide) as well as 
suggesting a broader (2-3 MeV wide) structure; the 
N14+Be9 scattering on the other hand has a smooth, 
nearly monotonic, energy dependence. Even at energies 
within one or two MeV of the "break" from pure 
Coulomb scattering, where the two cases shown in 
Fig. 1 both appear to have a similar smooth energy 
dependence, there are marked differences in the angular 
dependence of the elastic scattering cross sections. This 
fact is illustrated in Fig. 2; here the angular distribution 
of the 016+C12 case shows a diffraction-like structure 

in contrast again to a smooth monotonic angular 
variation of the N14+Be9 elastic scattering. This paper 
deals primarily with an attempt to see whether a simple 
optical-model potential for the nucleus-nucleus inter
action can account for the broad features of the elastic 
scattering—particularly the differences in the angular 
distributions of the type shown in Fig. 2 which occur 
near the Coulomb barrier energy. However, the object 
was not only to find a systematic set of potential 
parameters that would fit the elastic interactions of a 
number of nucleus-nucleus systems but also to obtain 
a plausible set of potentials for the purpose of computing 
transmission factors that are required in compound-
nucleus calculations of heavy-ion cross sections. These 
calculations are the subject of a separate paper that is 
in preparation. 

The attempt made in this paper to account for the 
average features of the low-energy nucleus-nucleus 
scattering uses a complex interaction potential of the 
Woods-Saxon type. Since the optical model cannot be 
expected to account for the sharp resonance structure 
which appears at higher energies in the 016+C12 case 

FIG. 1. The energy dependence of 
the elastic scattering at 90° in the 
center-of-mass system of O16 by C12 at 
the left and of N14 by Be9 at the right. 
The ordinate is the observed scattering 
cross section divided by the Ruther
ford cross section. 
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FIG. 2. Angular distributions for 
the elastic scattering of N14 by Be9 

at the left and of 016 by C12 at the 
right. The ordinate is the observed 
scattering cross section divided 
bv the Rutherford cross section. 

as well as in other systems, most notably in C12+C12, 
only low-energy data were considered initially. In 
addition a simple interaction potential might be ex
pected a priori to apply successfully to distant collisions 
in which only interpenetration of the low-density outer
most nucleons might be expected. In fact the optical-
model fits obtained even at low energies are shown 
below to imply greater interpenetration of the nuclei 
than seems physically reasonable. The potentials ob
tained were used to compute transmission factors and 
total absorption cross sections which are compared with 
experimental values. 

B. THE OPTICAL-MODEL POTENTIAL 

Calculations were carried out using an existing 
program4 and a Burroughs 205 (Datatron) computer. 
In these calculations numerical solutions are found for 
the Schrodinger equation with a complex potential. 

V(f) = V(f)coulomb+ V(f)nudear+ ( * 2 / 2 / i ) P ( / + 1 ) / * 8 ] • 

The Coulomb potential used was that for a uniformly 

FIG. 3. The curves 
are the results of 
optical-model com
putations with three 
different values of 
the imaginary poten
tial depth W. The 
points are experi
mental data for 
016+C12 scattering 
at 10 MeV. 
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4 J. M. Kennedy, Chalk River Report CRT-1052, 1961 (un
published). 

charged sphere of radius Rc. The nuclear potential, 
which is complex, used a Woods-Saxon form5 and can 
be written 

F(r)nuciear= (Vo+iWo)/{l+exp[(r-*o)A]} • 

Since the model parameters, Rc, Vo, Woy Ro, and a, are 
five in number, and since no automatic search routine 
was available, it was felt desirable to reduce the number 
of parameters. Consequently, Rc was set equal to R0 in 
all calculations. The relation 

£ 0 =n)(^i 1 / 3 +^2 1 / 3 ) 

was used to define a reduced radius ro] Ai and A2 are 
the mass numbers of the incident and target nuclei. 

Reasoning that the reflection a t the potential surface 
should be at least as important for heavy ions as in the 
case of alpha-particle scattering, where Igo6 was able 
to show that the scattering is dependent mainly on the 
surface of the optical-model potential, it was decided 
initially to fix VQ at —50 MeV and thus to reduce the 
number of parameters to three. As is discussed later, 
this procedure is justified, since, for the cases considered, 
it appears that the scattering can determine at most 
only two parameters of the real potential well. 

C. FITS TO THE DATA 

Since only three parameters are involved, the fits 
were obtained by observing trends as one parameter at 
a time was changed. In this way sets of parameters that 
gave reasonably good fits to all the low-energy data 
were found. As will be discussed in the following 
section D the fits do not comprise a unique set of 
parameters. 

The effect of varying the imaginary part of the 
potential, W, while holding the remaining parameters 

5 R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954). 
6 G. J. Igo, Phys. Rev. Letters 1, 72 (1958); Phys. Rev. 115, 

1665 (1959). 
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FIG. 4. The curves are optical-model fits to the experimental data for N14+Be9 at the left, N14-f-C12 in the middle, and 016-f-C18 

at the right. The optical-model parameters are: N14-fBe9; F = - 5 0 MeV, W=-10 MeV, r0 = 1.31 F, a = 0A5 F. N14+C12; 
F = - 5 0 MeV, JF = - 4 MeV, r0=1.19 F, a = 0A9 F. 016+C12; F = - 5 0 MeV, W = - 2 MeV, r0 = 1.265 F# a = 0.39 F. 

constant is demonstrated in Fig. 3 for the 0 1 6+C 1 2 

system at 10 MeV. A small value of W is seen to produce 
a large "diffraction'' oscillation and a large value results 
in an almost smooth curve. I t is apparent in Fig. 4, 
which shows the fits obtained to the experimental 
results for three different systems, that it is, indeed, 
mainly this one difference, the size of W, that dis
tinguishes the different cases; the values of W are 
- 1 0 , - 4 , and - 2 MeV for the N1 4+Be9 , N14+C12 , 
and0 1 6 +C 1 2 systems, respectively. 

The remaining parameters, r0 and ay while not 
affecting the size of the oscillations affect the positions 
of the peaks and valleys. In fact, it is possible to cause 
these peaks and valleys to move to larger or smaller 
angles until a new and approximately equally good fit 
is obtained by appropriate changes in r0 and a. This 
ambiguity is discussed more fully in the following 
section D. 

The measured behavior of the elastic scattering at 90° 
as a function of the energy for the 0 1 6+C 1 2 and the 
N1 4+Be9 systems is compared in Fig. 5 to the optical-
model calculations. The latter are based on the param

eters which yield a fit to the angular distributions at 
low energy shown in Fig. 4. The three curves in the 
Qi6_[_ Q12 c a s e correspond to three possible fits obtained 
to the low-energy angular distributions using three 
different combinations of r0 and a, as discussed above 
and in more detail below. As expected, the three 
calculated curves agree very well with each other in 
the region from 8 to 10 MeV where the angular distribu
tions were fitted; for the higher energies the different 
cases give somewhat different results, possibly allowing 
a choice among them to be made. However, all three 
cases predict a broad dip at about 13 MeV, consistent 
with a qualitative trend of the data if one averages 
over the narrow resonance structure. 

In the N1 4+Be9 case, the energy dependence of the 
data is smooth and it is possible to obtain a very good 
fit. The different curves are in this case for different 
values of W, and give an indication of the degree to 
which this parameter is determined. The curve with 
PJ7= —10 MeV corresponds to the fit shown for the 
low-energy angular distributions in Fig. 4. 

I t is suggested by the curves shown in Figs. 3, 4, and 
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FIG. 5. The dashed curves on the left were computed using the sets of parameters that fit the low-energy 016-fC ia angular 
distributions in Fig. 4; the solid curve in this case has no significance but to join the experimental points. The solid curve through 
the N14+Be9 data on the other hand is the result of an optical-model computation using the parameters determined by fitting 
the corresponding angular distributions in Fig. 4; the dashed curves show the effect of varying the magnitude of the imaginary 
potential W. 
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FIG. 6. Total reaction cross section data for N14+C12. The 
curves are the results of optical-model computations using the 
parameters determined by the fits to the elastic scattering. Both 
the absolute scale and the shapes of the curves are in good agree
ment with the experimental points. 

5 and is borne out by detailed inspection of the optical-
model phase shifts which is discussed in the following 
sections that the diffraction oscillations of the angular 
distributions are a result of size resonances. When IF is 
increased, these size resonances get broader until they 
completely overlap and disappear. 

Figures 6 and 7 compare the optical-model prediction 
for the reaction cross section with some recent measure
ments.7 The data points in Figs. 6 and 7, consisting of 
crosses, represent measurements of charged particles 
integrated over all angles. Small corrections for the 
undetected neutron emission and three-particle breakup 
have been included. The open points are the results of 
measurements in which essentially all pulses from a 
3X3-in. Na l scintillation detector placed at 90° to the 
beam were recorded. Since most reaction channels 
result in one or more gamma rays, this method yields a 
fair measure of the energy dependence of the total 
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FIG. 7. Total reaction cross section data for 016-f C12. The 
curves are the results of optical-model calculations using the 
parameters determined by the fits to the elastic scattering.^ Both 
the absolute values and the trend of the cross sections are in fair 
agreement with the experimental points. 

reaction cross section. These gamma-ray data are used 
to interpolate and extrapolate the yield curves between 
and beyond the few points shown by crosses where 
absolute cross sections were measured. The three 
calculated curves in each case correspond to three 
possible fits to the low-energy elastic scattering angular 
distributions. Apart from a suggestion of local irregu
larities in the 0 1 6+C 1 2 case, which might be interpreted 
as a size resonance effect in the region of 8 to 12 MeV, 
the optical model correctly predicts the reaction cross 
sections. 

D. DISCUSSION 

Figure 8 summarizes the optical-model parameters 
obtained for the three scattering systems considered. 
The sets of points in the (Vo,a) plane for 01 6+C1 2 and 
N14+C12 correspond to sets of parameters which give 
satisfactory fits to the data. In each case it is the middle 
point which corresponds to the fit shown in Fig. 4. The 
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the potential used are defined in the text of Sec. B. 

position in the (fo,a) plane on a line at right angles to 
the sets of points shown, i.e., on a line given approxi
mately by ro=a+0.8, appears to be most closely 
related to the effects usually associated with the nuclear 
size; motion along this line in the direction of increasing 
ro and a increases the average deviation from Rutherford 
scattering, as well as increasing the reaction cross 
section, while motion perpendicular to the line mainly 
affects the positions of the oscillations. I t appears, 
therefore, that only small differences in the nuclear size 
exist between the different systems, apart from the 
Ai1IS+A2

lls factor in the interaction radius. 
The (ro,a) ambiguity revealed in this work, in which 

satisfactory fits to the data can be obtained with a 
discrete set of values of r0 and a, is similar to the well-
depth ambiguity discussed by Adair8 for neutron 

7 E. Almqvist and J. A. Kuehner (to be published). 8 R. K. Adair, Phys. Rev. 94, 737 (1954). 
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scattering and to the V—W ambiguity for deuteron 
scattering discussed recently by Drisko et al.9 

Figure 9 gives an example of the ambiguity for 
0 1 6+C 1 2 scattering. The data points give the experi
mental angular distribution at 10 MeV. Of the three 
curves, those labeled a and c correspond to two adjacent 
regions in the {r^a) plane where satisfactory fits were 
obtained. The curve labeled b, which has its "diffrac
tion" pattern obviously displaced, used values of ro and 
a which are the arithmetic mean of those used for 
curves a and c. 

In attempting to understand why the ambiguity 
illustrated in Fig. 9 occurs, it is instructive to examine 
the details of the optical model calculation. In Fig. 10 
are plotted the magnitude and phase of the "reflection 
coefficients" rj1. [The rj1 are complex quantities calcu
lated in the optical-model program and are related to 
the optical-model phase shifts ai by rn=exp(2i<ri)2. I t 
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FIG. 9. Optical-model curves for three different potentials are 
compared with the 016-f-C12 scattering angular distribution at 
10 MeV. The curves labeled a and c correspond to two sets of 
optical-model parameters which both give good fits to the experi
mental data. The curve labeled b uses optical-model parameters 
which are the arithmetic mean of those used for curves a and c 
and does not fit the experimental data. 

is strongly suggested by the nature of the curves in 
Figs. 9 and 10 that the diffraction oscillations in the 
angular distributions are related to coherent effects in 
the reflection coefficients in which there is a periodic 
change in both modulus and phase in going from even 
to odd values of /. I t is seen that solutions a and c show 
periodic effects in t\ % which are in phase with each other 
but out of phase with those of solution b. \ 

This result follows from the fact that the changes in 
the potential involved are just of the correct magnitude 
to allow exactly one less node in the radial wave function 
in going from solution a to solution c. This is illustrated 
in Fig. 11, which shows the modulus of the radial wave 
function for 1=0 and l~l for each of the cases labeled 
a and c in Figs. 9 and 10. 
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I 

FIG. 10. The modulus and phase of the reflection coefficient -qi 
are plotted as a function of I for three cases. The curves labeled a 
and c correspond to two sets of optical-model parameters which 
give very nearly the same elastic scattering (see curves a and c of 
Fig. 9). The parameters used for case b are the arithmetic mean 
of those cases a and c (see also Fig. 9). 

I t is clear that the even-odd periodicity illustrated 
in Fig. 10 is a manifestation of "size-resonance effects, 
i.e., the effects of a potential exactly the correct size to 
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9 R. M. Drisko, G. R. Satchler, and R. H. Bassel, Phys. Letters 
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FIG. 11. The modulus of the radial wave functions are plotted 
against the radius for / = 0 and 7 partial waves for the cases a (top) 
and c (bottom) of Figs. 9 and 10. The positions of the angular 
momentum barrier for 1 = 7 partial waves, n=7> and of the half-
value point of the nuclear potential, fo(^i1/3+^21/3), are indicated. 
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accommodate the required number of nodes of the 
radial-wave function for each partial wave. An earlier 
assertion is now made more clear, namely, that the 
diffraction oscillations observed in the elastic scattering 
angular distributions have the same essential origin as 
the size resonances in the energy distribution. 

As pointed out by Drisko et at.9 using results derived 
in the WKB approximation by Austern,10 the condition 
for ensuring that one more wave be contained inside 
the potential becomes apparent from the expressions 
for the WKB phase shifts 

Here 

where 

7ji=expl2iSi(ri)']. 

Si(ri) = Ci+[ Kttfdr, 

XtEe.m-V(r)-Vc(r)- -iW(r)-(¥/2^)l(l+l)T 

Ci is a constant and n is the classical turning point 
nearest the origin. It is seen that if the difference 
Sv(ri) — Si(ri) (where the primed and unprimed 
symbols refer to two different potentials) is ir or an 
integral number times ir then the y\i are unaffected. For 
the potentials a and c 6V (fo)-5o(fo) is 2.73+0.06;. The 
difference between this number and TT may well arise 
mainly in the barrier region due to a breaking down of 
the WKB validity condition 

\(dKi/dr)/2K?\<a. 

It is seen from the small imaginary part of the above 
difference that the values of Si(ri) obtained from the 
above relations are quite insensitive to W for the 
potentials used in this paper. Since the positions of the 
diffraction oscillations in the angular distributions are 
apparently determined approximately by the Si(ri) it 
follows that their positions should not be sensitive to 
changes in W. This is indeed the case (see Fig. 3). 

It was pointed out above, in connection with Fig. 5, 
that one might be able to resolve the ambiguity between 
the various solutions by making use of the energy 
dependence data. However, this would require energy 
independence of the potential, a condition which is 
usually not assumed to hold. 

Mcintosh et al.11 theoretically obtain the long-range 
part of the interaction between N14 and C12 from the 
nucleon-nucleus optical-model potential. Their calcula
tions suggest that values of a^0.5 would be appropriate 
for the N14+C12 potential. However, even if the value 
of the surface thickness parameter a were fixed, there 
would still be an ambiguity of the type discussed above 
(i.e., the undetermined number of nodes), since VG and 

10 N. Austern, Ann. Phys. (N. Y.) 15, 299 (1961). 
" J . S. Mcintosh, S. C. Park, and G. H. Rawitscher (to be 

published). See also Proceedings of the Second Conference on Re
actions between Complex Nuclei, edited by A. Zucker, F. T. Howard, 
and E. Halbert (John Wiley & Sons, Inc., New York, 1960). 

r0 could be adjusted to allow more or fewer nodes in 
the wave functions. 

While the real potential appears to control the 
number of nodes of the wave function inside the 
nucleus the imaginary potential has very little effect in 
this regard. Instead, the imaginary potential controls 
the size of the diffraction oscillations. Let us now turn 
to a consideration of the significance of the imaginary 
potential. 

The inset table in Fig. 8 summarizes the values of W 
obtained. Physically it appears reasonable that in 
low-energy collisions W should be largest for those 
cases involving loosely bound nucleons that can readily 
be transferred from one nucleus to the other. Such 
transfer processes will result in absorption from the 
incident beam in distant collisions and, on this point of 
view, scattering involving Be9 would be expected to 
have a larger W than 016+C12 collisions, where both 
nuclei are strongly bound, in agreement with the results 
of the optical-model fits. 

However, examination of Fig. 3 reveals that the main 
effect of a small W is a prominent diffraction structure 
in the elastic scattering angular distribution. This leads 
to the question: What specifically within the framework 
of the model makes a small value of W lead to large 
diffraction effects? In order to gain some insight into 
this question, it is instructive to examine in detail the 
optical-model phase shifts and wave functions for cases 
with differing values of W. In Fig. 12 are plotted the 
modulus and phase of the reflection coefficient rji for 
the cases W= — 2 MeV (closed circles) and W =—5 
MeV (open circles) corresponding to two of the angular 
distribution curves of Fig. 3. The first point to notice 
is that for this low-energy case there is no small region 

0 i 6 + c . 2 

EQM.= IOMeV 

V = -50MeV 
r0= 1.265 F 
a = 0.39 F 

W=-5MeV 

FIG. 12. The modulus and phase of the reflection coeflicients m 
are plotted as a function of I for the cases W=-2 MeV (closed 
circles) and W = — 5 MeV (open circles) corresponding to two of 
the angular distribution curves of Fig. 3. 
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FIG. 13. The modulus of the radial wave functions are plotted 
against the radius for / = 0 and 7 partial waves for W——2 MeV 
(top) and for W——5 MeV (bottom), corresponding to two of 
the angular distribution curves of Fig. 3. 

of / corresponding to the transition from \rn\ small to 
|r]i\ = 1 . One can therefore expect important contribu
tions from all partial waves below about /= 8. Secondly, 
both the modulus and phase of t\i oscillate with a period 
~2l, the oscillation being smaller in amplitude for the 
larger value of W. It has been pointed out by Austern10 

that this oscillation results from interference between 
the waves reflected at the surface and those reflected at 
the centrifugal barrier (well inside the potential for this 
low-energy case). Thus, for W sufficiently small (such 
that the mean free path is of the order of the interaction 
radius), this interference causes an oscillatory behavior 
of both modulus and phase of rji, resulting in systematic 
differences in r\i for odd and even values of /. This, in 
turn, leads to an oscillatory angular distribution since 
the Legendre functions making up the amplitude for 
scattering add in a coherent manner. 

The mean free path in an optical potential can be 
written12 

mfp= (4.6/M
i/2)[(£- vyy-w], 

where n is the reduced mass, E— V is the kinetic energy, 
and W is the imaginary potential. Strong oscillations 
appear with W=—2 MeV, for which the mean free 

path is ~6.8 F. With W= - 5 MeV, the mean free path 
is reduced to ~2.7 F, thus allowing only a small fraction 
of the incident wave to penetrate to the angular 
momentum barrier; the result is a very weak inter
ference oscillation. 

Figure 13 contains graphs of the modulus of the 
radial wave function for the /=0 and 7 partial waves 
for W= -2 MeV (top) and for W= - 5 MeV (bottom). 
The positions of the surface, equal to ro(^4i1/3+^21/2), 
and of the angular momentum barrier for 1=7, denned 
by equating the kinetic energy in the potential to the 
angular momentum energy for l=-7, are indicated in 
Fig. 13. As expected, the amplitude of the wave function 
inside the potential is considerably larger for the case 
of the smaller absorption and indeed remains large in 
to a radius less than 1 F. 

Now, a question arises: Is it physically realistic for a 
C12 nucleus to penetrate an O16 nucleus to the extent of 
4 to 5 F overlap, without being absorbed? It appears, 
at first sight, that this is not realistic and that the 
correct interpretation may be that the optical model 
happens to give the correct phase shifts but for the 
wrong reasons. A more realistic model might involve 
nuclear distortions at close approach with a resultant 
rearrangement barrier preventing deep interpenetration 
or possibly it might involve the resonant transfer of an 
alpha particle13 in the case of 016+C12. 

It should be pointed out that a similar situation 
exists in the case of alpha-particle scattering. In order 
to demonstrate this fact a correlation was looked for 
between the observed amplitudes of diffraction struc
ture in alpha-particle scattering and the mean-free path 
divided by the distance from the surface to the angular 
momentum barrier. This is shown in Fig. 14. The data 
shown are those tabulated by Mclntyre et al.u The 

40 

20 

10 
8 
6 

4 

'2 

i 

< 

« 

• 

• 

• •• 

0.4 0.6 0.81.0 2 
MEAN FREE PATH/(R- I>) 

FIG. 14. The observed average amplitude of the diffraction 
oscillations for alpha-particle elastic scattering from a number of 
elements is plotted as a function of the mean free path divided by 
the distance from the interaction radius to the position of the 
angular momentum barrier. 

12 F. L. Friedman and V. F. Weisskopf, Neils Bohr and the 
Development of Physicsy edited by W. Pauli (McGraw-Hill Book 
Company, Inc., New York, 1955). 

13 G. Temmer, Phys. Letters 1, 10 (1962). 
14 J. A. Mclntyre, S. D. Baker, and T. L. Watts, Phys. Rev. 

116, 1212 (1959). 
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ordinate is the observed average ratio of cross section 
on a maximum to that in a minimum. The abscissa was 
calculated using published6 optical-model parameters. 
The interaction radius R was set equal to 1A7(A)1,Z 

+ 1.77 and ry was calculated by equating the kinetic 
energy inside the potential to the angular momentum 
energy. The value of /' was determined by equating the 
kinetic energy to the angular momentum energy at the 
interaction radius, R. Figure 14 suggests an interpreta
tion of the optical-model fits to the alpha-particle 
scattering data which is similar to that outlined above 
for 01 6+C1 2 scattering. Thus, if the mean free path is 
made large with respect to the distance from the surface 
to the angular momentum barrier then large diffraction 
oscillations are obtained. Of course an alpha particle 
might reasonably have a much larger mean free path 
inside the nucleus than a more massive structure such 
as a C12 nucleus. 

E. SUMMARY 

Satisfactory quantitative fits to a number of heavy-
ion elastic scattering angular distributions measured 
for energies near the Coulomb barrier have been 
obtained using an optical model. Taking the parameters 
determined by these low-energy fits, it is found that the 
model gives a good account of the behavior of the 
elastic scattering as a function of collision energy up to 
energies as high as twice the Coulomb barrier value and 
also gives quantitative agreement with total reaction 
cross-section measurements over this same energy range. 
This agreement suggests that the given potentials can 
be used at low energies to compute reliable transmission 
factors which are required in compound nucleus 
computations of heavy-ion reactions. 

The model is able to account for the diffraction 
structure that sometimes occurs in heavy-ion elastic 
scattering. This structure is shown to have the same 
origin as the size resonances in the energy distributions. 
The positions of the oscillations are found to be sensitive 
to the real potential in a way which is related to the 
number of nodes of the radial wave functions which 
are contained in the potential. The amplitudes of the 
diffraction oscillations are found to be dependent on 
the magnitude of the imaginary potential; this magni
tude determines the amount of the wave function which 
can penetrate through the nuclear potential to be 
reflected by the angular momentum barrier and return 
to give rise to interference effects at the surface. For the 
case of 0 1 6 + C12 scattering, a mean free path inside the 
optical-model potential of ^ 6 F is required to account 
for the observed diffraction oscillations. Such deep 
interpenetration does not seem physically realistic, yet, 
within the framework of the model it appears to be a 
necessary condition for producing the observed ampli
tude of diffraction oscillations. 

In conclusion it should be emphasized that there is 
no really compelling evidence that actual physical 
heavy ions interpenetrate to great depths when under
going nuclear collisions. If such deep interpenetration 
does not take place then one must regard the optical 
model for these cases as being simply a convenient 
parameterization of the data with little or no further 
physical significance. 
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